#### **Radio-astronomy**

## **Interferometry - introduction**

Action Fédératrice ALMA/NOEMA Observatoire de Paris

P. Salomé

Credits: F. Gueth, J. Pety, R. Neri, R. Moreno ...

#### References

#### **Books**

- « Interferometry and Synthesis in Radio Astronomy » Thompson, Moran, Swensson
- « Radio Astronomy » J.D. Kraus
- « Tools of Radio Astronomy » K. Rohlfs & T.L. Wilson

#### **Proceedings and Talks**

- NRAO and IRAM radio-interferometry summer schools (in particular by F. Gueth and J. Pety)
  - > http://www.aoc.nrao.edu/events/synthesis/2012/lectures.shtml
  - http://www.iram-institute.org/EN/content-page-182-7-67-182-0-0.html

#### **<u>Credits</u>**

• Lectures : F. Gueth + J. Pety + R. Neri + R. Moreno + ...

## Outline



- Interferometry principles
- Imaging & Calibration
- Tutorials
  - Sensitivity
  - Imaging simulation
  - Proposal preparation

The Young's holes experiment

<u>Diffraction pattern</u> (related to the size of each hole) —> the primary beam (defined by a the antenna diameter) :  $\theta_{prim} \sim 1.2 \lambda/a$ 

Interferometric pattern (related to the distance between the holes) —> the synthesized beam (define by the distance b between 2 antennas, also called the baseline)  $\theta_{synth} \sim 1.2 \ \lambda/d$ 







- LMT/GMT 50m telescope
- IRAM-30m telescope
- Single dish > 50 m needs :
  - High surface quality (efficiency):
    λ/20~50μm
  - Excellent pointing accuracy (wind / structure deformation): HPBW/10

Increase the spatial resolution from  $\lambda/D$  to  $\lambda/B$ 





- LMT/GMT 50m telescope
- IRAM-30m telescope
- Single dish > 50 m needs :
  - High surface quality (efficiency):
    λ/20~50μm
  - Excellent pointing accuracy (wind / structure deformation): HPBW/10

Increase the spatial resolution from  $\lambda/D$  to  $\lambda/B$ 

|              | Altitude (m) | NANT | Diameter (m) | Coll.Area (m <sup>2</sup> ) |
|--------------|--------------|------|--------------|-----------------------------|
| IRAM PDBI    | 2550         | 6    | 15           | 1060                        |
| CARMA        | 2200         | 15   | 6/10         | 772                         |
| SMA+CSO+JCMT | 4080         | 10   | 6/10/15      | 481                         |
| NMA          | 1340         | 6    | 10           | 471                         |
|              |              |      |              |                             |
| IRAM NOEMA   | 2550         | 12   | 15           | 2120                        |
| ALMA         | 5060         | 50   | 12           | 5652                        |



#### A planet-forming disc around a young star



Looney et al (2000) BIMA observations



#### A planet-forming disc around a young star



#### A planet-forming disc around a young star



CARMA 2011: A,B,C configuration @ 230 GHz -> 130 milli-arcsec. Kwon et al (2011)

ALMA 2014: 15 km-baseline @ 233 GHz 4.5 hours ->35 milli-arcsec



#### Good imaging capability needs :

- if necessary : spatial resolution (and good weather)
- uv-coverage (sampling of the equivalent larger telescope area by the collection of smaller apertures)
- sensitivity

|              | Altitude (m) | NANT | Diameter (m) | Coll.Area (m <sup>2</sup> ) |
|--------------|--------------|------|--------------|-----------------------------|
| IRAM PDBI    | 2550         | 6    | 15           | 1060                        |
| CARMA        | 2200         | 15   | 6/10         | 772                         |
| SMA+CSO+JCMT | 4080         | 10   | 6/10/15      | 481                         |
| NMA          | 1340         | 6    | 10           | 471                         |
|              |              |      |              |                             |
| IRAM NOEMA   | 2550         | 12   | 15           | 2120                        |
| ALMA         | 5060         | 50   | 12           | 5652                        |



# **Principles :** $V_{\nu} \iff I_{\nu}(\sigma)$

The van Cittert-Zernike theorem

The Visibility (the measured spatial coherence fonction) is the Fourier transform of the source surface brightness spatial distribution

$$\mathbf{V}_{v} = \mathbf{TF} \left[ \mathbf{A}(\sigma) \mathbf{I}_{v}(\sigma) \right]$$



## **Principles : a point source**



The heterodyne receivers measure the incoming electric field :

#### **E cos (2**πν**†**)

<u>The correlator</u> is a multiplier followed by a time integrator. It measures :

r(t) = < E<sub>1</sub> cos ( $2\pi\nu(t-\tau_q)$ ).E<sub>2</sub> cos ( $2\pi\nu t$ ) >

=  $E_1 E_2 \cos(2\pi v \tau_g)$ 

with  $\tau_g$  the time delay that corresponds to the geometrical delay for a coherent signal to reach each antenna :

$$r_g = (b.s)/c$$

## **Principles : an extended source**



Correlator output:  $r = E_1 E_2 \cos(2\pi\nu\tau_g)$  $r = A(\mathbf{s})I(\mathbf{s})d\Omega\cos(2\pi\nu\tau_g(\mathbf{s}))$ 

## **Principles : an extended source**

$$\begin{split} R &= \int_{Sky} A(\mathbf{s})I(\mathbf{s})\cos(2\pi\nu\mathbf{b}.\mathbf{s}/c)\,d\Omega \quad \text{Measured correlator output} \\ &= \cos\left(2\pi\nu\frac{\mathbf{b}.\mathbf{s}_0}{c}\right)\int_{Sky} A(\sigma)I(\sigma)\cos(2\pi\nu\mathbf{b}.\sigma/c)d\Omega \\ &- \sin\left(2\pi\nu\frac{\mathbf{b}.\mathbf{s}_0}{c}\right)\int_{Sky} A(\sigma)I(\sigma)\sin(2\pi\nu\mathbf{b}.\sigma/c)d\Omega \\ &= \cos\left(2\pi\nu\frac{\mathbf{b}.\mathbf{s}_0}{c}\right)|V|\cos\varphi_V - \sin\left(2\pi\nu\frac{\mathbf{b}.\mathbf{s}_0}{c}\right)|V|\sin\varphi_V \\ &= |V|\cos(2\pi\nu\tau_g) - \varphi_V) \\ &\text{need to correct from the delay} \quad \text{We want something that resembles a TF} \\ &V = |V|e^{i\varphi_V} = \int_{Sky} A(\sigma)I(\sigma)e^{-2i\pi\nu\mathbf{b}.\sigma/c}d\Omega \end{split}$$

### **Delay correction**

- The geometrical delay varies slowly with the earth rotation at a rate of  $(\upsilon.d\tau_a/dt \approx \Omega_{terre} .b.\upsilon/c^{-10} Hz @ b=300m and 100 GHz)$
- Because the source is not monochromatic, the delay attenuates the fringes visibility

$$R = \frac{1}{\Delta\nu} \int_{\nu_0 - \Delta\nu/2}^{\nu_0 + \Delta\nu/2} |V| \cos(2\pi\nu\tau_g - \varphi_{\rm V}) \, d\nu$$
$$= |V| \cos(2\pi\nu_0\tau_g - \varphi_{\rm V}) \, \frac{\sin(\pi\Delta\nu\tau_g)}{\pi\Delta\nu\tau_g}$$

It depends on the antenna positions, the source direction and the time So the delay can be corrected

### **Delay correction**

A compensating delay is introduced in one of the branch of the interferometer, on the IF signal

 After fringe stopping, the correlator measures

 $R = |V|\cos(-\varphi_{\rm V})$ 

 A second correlator is necessary, with a signal phase shifted by pi/2

$$R_i = |V|\sin(-\varphi_{\rm V})$$



...it measures the complex visibility (amplitude and phase) for each baseline

## uv-plane

- The interferometer measures the complex visibility for each baseline
- (u, v) is the 2-antenna vector (baseline) projected on the plane perpendicular to the sourced direction : the uv-plane
- (u, v) are also called spatial frequencies
- Earth rotation (super-synthesis)

Spatial frequencies

$$V(u,v) = \int_{Sky} A(\ell,m) I(\ell,m) e^{-2i\pi\nu(u\ell+vm)} d\Omega$$

#### Weights

For small field of view, V is the 2D FT of the sky brighthness distribution multiplied by A(l,m) the primary beam



Measurements = uv plane sampling x visibilities

# Imaging

The measurements by the interferometer are

 $V(u,v) = \int \int A(x,y) I_{source}(x,y) e^{-2i\pi(ux+vy)} dxdy = FT\{B_{primary},I_{source}\}$ 

To determine the source brightness distribution, one must compute the inverse Fourier transform FT<sup>-1</sup>

 $I_{meas}(x,y) = \int \int S(u,v) V(u,v) e^{2i\pi(ux+vy)} du dv = FT-1 \{S.V\}$ 

but because of the limited sampling function (uv-coverage), the measurements are discrete (need to be gridded for computation)

- S(u,v)=1 at (u, v) points where visibilities are measured and S(u,v)=0 elsewhere
- One defines the dirty beam as  $B_{dirty} = 2D FT-1 \{S\}$ : the FT of the uv plane coverage i.e. the PSF of the observations

$$I_{meas} = FT-1 \{S.V\} = FT-1 \{S\} * FT-1\{V\} = FT-1 \{S\} * FT-1\{FT\{B_{primary}, I_{source}\}\}$$

 $I_{meas} = B_{dirty} * (B_{primary} . I_{source})$ 

measure I<sub>meas</sub> and B<sub>dirty</sub> -> do a deconvolution (a clean) -> divide by B<sub>primary</sub> -> get I<sub>source</sub>

## **1D Fourier transform**



Bdirty = 2D FT-1  $\{S\}$ 





#### Clean

- Look for clean components (emitting peaks in the map) in the dirty image
- Deconvolve from the dirty beam (side-lobes)
- Convolve the clean components by a clean beam (without the side-lobes) —> clean image
- Different methods exists : adapted to source distribution kind





#### **Real life : On-line calibrations**

- Pointing
- Focus
- IF filters band pass
- Atmospheric calibration
- Antenna positions
- Delay
- Atmospheric phase correction

Real-time calibrations

New values can be entered off-line if necessary

Uncorrected data are also stored

#### **Phase decorrelation**

The atmosphere turbulence, the water vapor and temperature variations induce optical length variations, that means a adding a phase noise in the visibility :  $\Delta \varphi = 2\pi \delta l/\lambda$ 

#### $\Delta \varphi \propto v$ and $\Delta \varphi \propto B^{0.5}$

The timescale of atmosphérique phase fluctuations is ~ 30s (short)

At PdB, for a 300m-baseline :  $\delta l \approx 200 \mu m$  :  $\Delta \varphi \approx 55^{\circ} \otimes 1.3 mm$ 

that corresponds to a radio-seeing of  $\sim 0.3-1$ "

Short time scale atmospheric phase fluctuations difficult to calibrate (WVR). It leads to a loss in the signal amplitude because of signal decorrelation (phase  $\sigma$ ). The atm decorrelation efficiency is :

 $\eta_a = e^{-0.5\sigma^2} \sim 0.63 \text{ @1.3mm (63\% only)}$ 

#### **Real life : offline-calibrations**

- Bandpass
- Phase
- Amplitude
- Flux

phase and amplitude vs freq phase vs time amplitude vs time absolute flux scale

#### **Calibration principles**

- Calibrate only temporal or frequency effects, no dependence on (u,v)
- True visibility: V<sub>ii</sub>(v,t) (baseline ij)
- Observed visibility:

$$Vobs_{ij}(v,t) = G_{ij}(v,t) V_{ij}(v,t) + noise$$

- G<sub>ii</sub> = complex gain (amplitude & phase)
- Scalar description no polarization

#### **Calibration principles**

#### Most of the effects are antenna-based

- Pointing, Focus, Antenna position, Atmosphere, Receivers noise, Receivers bandpass...
- Gain decomposition: Vobs<sub>ij</sub> = G<sub>ij</sub>V<sub>ij</sub> = g<sub>i</sub>g<sub>j</sub>V<sub>ij</sub>
- Baseline-based effect?
  - − Correlator bandpass → real-time calibration
  - Time and frequency averaging → decorrelation

#### **Calibration principles**

Observation of a point source of flux S:

$$Vobs = G_{ij} V V = S G_{ij} = Vobs/S$$

• Antenna –based gains:  $g_j g_j = Vobs/S$ 

• Can solve for antenna gains:

$$(g_1)^2 = Vobs_{12} Vobs_{31} / S Vobs_{32}$$

Do it for all triangles and average

#### **Example calibration : phase (gain)**



30 10 10 10

### Softwares

- □ GILDAS / astro : prepare observations (source LST, uv\_coverage, spectral configuration, calibrators) → ALMA/NOEMA ...
- □ GILDAS / clic : continuum and Line Interferomter Calibration) software → NOEMA
- □ GILDAS / mapping : uv-table to maps, deconvolution, analysis → ALMA / NOEMA ...

- $\Box$  ALMA-OT : proposal preparation
- □ CASA : Calibration (ALMA) + Imaging (ALMA / NOEMA)

### Outline



- Interferometry principles
- Imaging & Calibration
- **Tutorials** 
  - Sensitivity
  - Imaging simulation
  - Proposal preparation

# Thank you